A structure-specific endonuclease from cauliflower (Brassica oleracea var. botrytis) inflorescence.
نویسندگان
چکیده
A protein with structure-specific endonuclease activity has been purified to near homogeneity from cauliflower ( Brassica oleracea var. botrytis) inflorescence through five successive column chromatographies. The protein is a single polypeptide with a molecular mass of 40 kDa. Using three different branched DNA structures (flap, pseudo-Y and stem-loop) we found that the enzyme, a cauliflower structure-specific endonuclease, cleaved the single-stranded tail in the 5'-flap and 5'-pseudo-Y structures, whereas it could not incise the 3'-flap and 3'-pseudo-Y structures. The incision points occur around the single strand-duplex junction in these DNA substrates and the enzyme leaves 5'-PO4 and 3'-OH termini on DNA. The protein also endonucleolytically cleaves on the 3'-side of the single-stranded region at the junction of unpaired and duplex DNA in the stem-loop structure. The structure-specific endonuclease activity is stimulated by Mg2+ and by Mn2+, but not by Ca2+. Like mammalian FEN-1, the protein has weak 5'-->3' double-stranded DNA-specific exonuclease activity. These results indicate that the cauliflower protein is a plant structure-specific endonuclease like mammalian FEN-1 or may be the plant alternative.
منابع مشابه
Variation and selection at the CAULIFLOWER floral homeotic gene accompanying the evolution of domesticated Brassica oleracea.
The evolution of plant morphologies during domestication events provides clues to the origin of crop species and the evolutionary genetics of structural diversification. The CAULIFLOWER gene, a floral regulatory locus, has been implicated in the cauliflower phenotype in both Arabidopsis thaliana and Brassica oleracea. Molecular population genetic analysis indicates that alleles carrying a nonse...
متن کاملThe role of BoFLC2 in cauliflower (Brassica oleracea var. botrytis L.) reproductive development
In agricultural species that are sexually propagated or whose marketable organ is a reproductive structure, management of the flowering process is critical. Inflorescence development in cauliflower is particularly complex, presenting unique challenges for those seeking to predict and manage flowering time. In this study, an integrated physiological and molecular approach was used to clarify the...
متن کاملPartial Purification and Characterization of Dna Polymerases from the Cauliflower Inflorescence'
Two distinct DNA polymerases, designated A and B, have been partially purified from rapidly growing apical tissues of the cauliflower inflorescence (Brassica oleracea, var. botrytis). They were readily separable from each other, because enzyme A was adsorbable on an anionexchanger, but enzyme B was not. The effects of divalent rations and ionic strength on both enzyme activities were very diffe...
متن کاملA Brassica oleracea gene expressed in a variety-specific manner may encode a novel plant transmembrane receptor.
The species Brassica oleracea includes several agricultural varieties characterized by the proliferation of different types of meristems. Using a combination of subtractive hybridization and PCR (polymerase chain reaction) techniques we have identified several genes which are expressed in the reproductive meristems of the cauliflower curd (B. oleracea var. botrytis) but not in the vegetative me...
متن کاملSimultaneous extraction and quantitation of carotenoids, chlorophylls, and tocopherols in Brassica vegetables.
Brassica oleracea vegetables, such as broccoli (B. oleracea L. var. italica) and cauliflower (B. oleracea L. var. botrytis), are known to contain bioactive compounds associated with health, including three classes of photosynthetic lipid-soluble compounds: carotenoids, chlorophylls, and tocopherols. Carotenoids and chlorophylls are photosynthetic pigments. Tocopherols have vitamin E activity. D...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 25 24 شماره
صفحات -
تاریخ انتشار 1997